Communication

Mechanism and Stereochemistry of Enzymatic Cyclization of 24,30-Bisnor-2,3-oxidosqualene by Recombinant β-Amyrin Synthase

Ikuro Abe, Yuichi Sakano, Megumi Sodeyama, Hideya Tanaka, Hiroshi Noguchi, Masaaki Shibuya, and Yutaka Ebizuka
J. Am. Chem. Soc., 2004, 126 (22), 6880-6881• DOI: 10.1021/ja0490368 • Publication Date (Web): 15 May 2004

Downloaded from http://pubs.acs.org on March 31, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Mechanism and Stereochemistry of Enzymatic Cyclization of 24,30-Bisnor-2,3-oxidosqualene by Recombinant $\boldsymbol{\beta}$-Amyrin Synthase

Ikuro Abe, ${ }^{,, \dagger}$ Yuichi Sakano, ${ }^{\dagger}$ Megumi Sodeyama, ${ }^{\dagger}$ Hideya Tanaka, ${ }^{\dagger}$ Hiroshi Noguchi, ${ }^{\dagger}$ Masaaki Shibuya, ${ }^{\ddagger}$ and Yutaka Ebizuka ${ }^{\ddagger}$
School of Pharmaceutical Sciences and the COE 21 Program, University of Shizuoka, Shizuoka 422-8526, Japan, and Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Received February 20, 2004; E-mail: abei@ys7.u-shizuoka-ken.ac.jp
β-Amyrin synthase ($\beta \mathrm{AS}$) (E.C. 5.4.99.) catalyzes the cyclization of (3S)-2,3-oxidosqualene (1a) to β-amyrin (olean-12-en- 3β-ol) (2), forming a total of eight chiral centers in a single reaction. The formation of β-amyrin is initiated in the chair-chair-chair-boat conformation of $\mathbf{1 a}$, and the reaction is thought to proceed through a series of rigidly held carbocationic intermediates. During the biosynthesis of β-amyrin, an electrophilic addition of the tetracyclic baccharenyl cation on to the terminal double bond generates the lupanyl tertiary cation with a five-membered E-ring, which is followed by ring expansion to yield the oleanyl secondary cation (Scheme 1). Formation of the oleanyl cation thus relieves ring strain by creating a six-membered E-ring, despite sacrificing a tertiary carbocation for a secondary one. Finally, the oleanyl C-19 cation undergoes sequential 1,2-hydride shifts with elimination of $\mathrm{H}-12 \alpha$ to yield a $6 / 6 / 6 / 6 / 6$-fused ring system with the Δ^{12} double bond. ${ }^{1,2}$

Recent advances in enzymology ${ }^{3}$ and molecular biology ${ }^{4}$ of β AS offered the opportunity to reinvestigate the still cryptic questions regarding the mechanism and stereochemistry of the remarkable ring-forming reaction. ${ }^{5,6}$ We report herein enzymatic conversion of 24,30 -bisnor-2,3-oxidosqualene (1b) by a recombinant $\beta \mathrm{AS}$ from Pisum sativum ${ }^{4 \mathrm{~b}}$ functionally expressed in yeast. As earlier described by Professor E. J. Corey in 1968, "the omission of these particular carbons from an oxidosqualene-like substrate constitutes a major structural perturbation in the region of the most complex and interesting processes in amyrin biosynthesis, those affecting the development of the D and E rings with their pendant groups". ${ }^{7}$ Furthermore, to elucidate the enzyme reaction mechanism, we also carried out synthesis and enzymatic cyclization of ${ }^{13} \mathrm{C}$ - and ${ }^{2} \mathrm{H}$ labeled isotopomers of $\mathbf{1 b}$.

24,30-Bisnor-2,3-oxidosqualene (1b) was chemically synthesized in racemic form starting from 1, $1^{\prime}, 2$-trisnorsqualene-3-aldehyde. ${ }^{8}$ Two isotopomers, $\left[23-{ }^{13} \mathrm{C}\right]-\mathbf{1 b}$ and $\left[23,23-{ }^{2} \mathrm{H}\right]-\mathbf{1 b}$, were also prepared by Wittig condensation of the aldehyde with ${ }^{13} \mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{I}$ (99 atom $\%{ }^{13} \mathrm{C}$) and $\mathrm{C}^{2} \mathrm{H}_{3} \mathrm{PPh}_{3} \mathrm{I}\left(95+\right.$ atom $\left.\%{ }^{2} \mathrm{H}\right)$, respectively. Enzyme reaction with the recombinant P. sativum β AS resulted in isolation of three cyclization products, which were readily separated by reverse-phase HPLC. ${ }^{9}$ Spectroscopic data (MS, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR) of the major product ($3.8 \mathrm{mg}, 19 \%$ yield) showed good accordance with those of β-amyrin except the signals due to the terminal methyl groups; the MS spectrum indicated a characteristic parent ion peak at $m / z 190$ derived from retro-Diels Alder cleavage of the C-ring, while the ${ }^{1} \mathrm{H}$ NMR revealed the presence of six methyl singlets ($\delta 1.15,1.00,0.98,0.94,0.81,0.79$) and one vinylic proton ($\delta 5.20, \mathrm{t}, J=2.8 \mathrm{~Hz}$). ${ }^{10}$ Further, heteronuclear correlation NMR spectroscopy (HMQC and HMBC) as well as NOEs observed between $\mathrm{Me}-28 / \mathrm{Me}-26, \mathrm{Me}-28 / \mathrm{H}-18$, and $\mathrm{Me}-26 / \mathrm{Me}-25$ confirmed the structure of 29,30 -bisnor- β-amyrin (4b). On the other hand,

[^0]incubation with [23- $\left.{ }^{13} \mathrm{C}\right]-\mathbf{1 b}$ and $\left[23,23-{ }^{2} \mathrm{H}\right]-\mathbf{1 b}$ also afforded ${ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$-labeled $\mathbf{4 b}$, respectively. No significant isotope effects were observed for the yields and patterns of the enzyme reaction products. The NMR spectra of the $\left[{ }^{13} \mathrm{C}\right]-\mathbf{4 b}$ demonstrated that the label appeared at C-19 ($\delta 34.2$), while C-18 ($\left.\delta 51.8, \mathrm{~d},{ }^{1} J_{\mathrm{CC}}=31 \mathrm{~Hz}\right)$ and C-20 $\left(\delta 27.4, \mathrm{~d},{ }^{1} J_{\mathrm{CC}}=30 \mathrm{~Hz}\right)$ appeared as doublets. Moreover, in the ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}$ NMR of the $\left[{ }^{2} \mathrm{H}\right]-\mathbf{4 b}, \alpha$-deuterium isotope effects were observed for $\mathrm{C}-19\left(\delta_{\mathrm{C}(\mathrm{D})} 33.7, \mathrm{t},{ }^{1} J_{\mathrm{CD}}=21 \mathrm{~Hz}\right)$ and $\mathrm{C}-20\left(\delta_{\mathrm{C}(\mathrm{D})} 26.8, \mathrm{t},{ }^{1} J_{\mathrm{CD}}=18 \mathrm{~Hz}\right)$, accompanied by β-deuteriumshifted $\mathrm{C}-18\left(\delta_{\mathrm{C}(\mathrm{D})} 51.7\right)$ and $\mathrm{C}-21\left(\delta_{\mathrm{C}(\mathrm{D})} 22.2\right)$. These labeling patterns clearly established that the cyclization reaction proceeded through route B in Scheme 1.

The structure of the second product ($1.3 \mathrm{mg}, 7 \%$ yield) was then determined to be 29,30-bisnorgermanicol ($\mathbf{5 b}$), a regioisomer with the Δ^{18} double bond, which was confirmed by the following spectroscopic data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, HMQC, HMBC, NOE, and MS). ${ }^{11}$ First, the ${ }^{1} \mathrm{H}$ NMR showed the presence of six methyl singlets ($\delta 1.09,1.04,0.97,0.88,0.77,0.75$) and one vinylic proton ($\delta 5.15$, brs), in good agreement with those of germanicol. ${ }^{5 b}$ Further, in the NMR spectra of the $\left[{ }^{13} \mathrm{C}\right]-\mathbf{5 b}$, the label appeared at $\mathrm{C}-19(\delta$ 118.5), while C-18 ($\left.\delta 145.5, \mathrm{~d},{ }^{1} J_{\mathrm{CC}}=72 \mathrm{~Hz}\right), \mathrm{C}-20(\delta 26.5, \mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CC}}=42 \mathrm{~Hz}\right)$, and $\mathrm{H}-19\left(\delta 5.15\right.$, brd, $\left.{ }^{1} J_{\mathrm{CH}}=151 \mathrm{~Hz}\right)$ appeared as doublets. Moreover, in the ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[{ }^{2} \mathrm{H}\right]-$ $\mathbf{5 b}, \alpha$-deuterium isotope effects were observed for $\mathrm{C}-19\left(\delta_{\mathrm{C}(\mathrm{D})} 118.0\right.$, brt, ${ }^{1} J_{\mathrm{CD}}=13 \mathrm{~Hz}$) and C-20 ($\delta_{\mathrm{C}(\mathrm{D})} 25.8$, brt, $\left.{ }^{1} J_{\mathrm{CD}}=16 \mathrm{~Hz}\right)$, accompanied by β-deuterium-shifted C -18 ($\delta_{\mathrm{C}(\mathrm{D})} 145.4$) and C-21($\delta_{\mathrm{C}(\mathrm{D})} 18.8$). In addition, NOEs observed between Me-28/H-13, Me$26 / \mathrm{H}-13$, and $\mathrm{Me}-26 / \mathrm{Me}-25$ were uniquely consistent with the structure of $\mathbf{5 b}$. Finally, the structure of the minor product (0.3 $\mathrm{mg}, 1 \%$ yield) was postulated to be 29,30 -bisnor- δ-amyrin ($\mathbf{6 b}$), another regioisomer with the $\Delta^{13(18)}$ double bond, on the basis of its MS and ${ }^{1} \mathrm{H}$ NMR spectra, which showed good accordance with those of δ-amyrin. ${ }^{12,4 b}$

24,30-Bisnor-2,3-oxidosqualene was thus enzymatically converted to a 3:1:0.2 mixture of 29,30 -bisnor- β-amyrin (4b), 29,30bisnorgermanicol (5b), and 29,30-bisnor- δ-amyrin ($\mathbf{6 b}$) by the recombinant P. sativum β AS. The efficient formation of $\mathbf{4 b}$ supported the early report by Corey and Gross. ${ }^{7}$ Further, the enzyme reactions with [23- $\left.{ }^{13} \mathrm{C}\right]$ - and $\left[23,23-{ }^{2} \mathrm{H}\right]$-labeled isotopomers of $\mathbf{1 b}$ demonstrated that the cyclization of $\mathbf{1 b}$ did not proceed through formation of a bisnorlupanyl primary cation with a five-membered E-ring (Scheme 1, route A) (in contrast, the biosynthesis of β-amyrin involves formation of the lupanyl tertiary cation), but an electrophilic addition of the tetracyclic C-18 cation on to the terminal double bond directly generated a thermodynamically favored bisnoroleanyl secondary cation with a less-strained sixmembered E-ring (3b) (or its equivalent) (Scheme 1, route B). The E-ring formation of the bisnor products was thus apparently under thermodynamic control. Finally, the enzymatic formation of three

Scheme 1. Proposed Mechanism for the Cyclization of 2,3 -Oxidosqualene (1) (Route A) and 24,30 -Bisnor-2,3-oxidosqualene (1b) (Route B)

3b: $\mathrm{R}=\mathrm{H}$

Lupanyl cation

Oleanyl cation

2

4b: $R=H$

5b: $\mathrm{R}=\mathrm{H}$

$6 b: R=H$
regioisomers with the $\Delta{ }^{12} \Delta^{13(18)}$, and Δ^{18} double bond suggests lack of strict control on the final rearrangement reactions. It should be noted that formation of $\mathbf{4 b}$ from the bisnoroleanyl C-20 cation (3b) requires three 1,2-hydride shifts $(\mathrm{H}-19 \beta \rightarrow 20 \beta, \mathrm{H}-18 \alpha \rightarrow$ $19 \alpha, \mathrm{H}-13 \beta \rightarrow 18 \beta$), while that of β-amyrin from the oleanyl C-19 cation involves only two 1,2 -hydride shifts $(\mathrm{H}-18 \alpha \rightarrow 19 \alpha, \mathrm{H}-13 \beta$ $\rightarrow 18 \beta$) with elimination of $\mathrm{H}-12 \alpha$ (Scheme 1). Presumably, the absence of the terminal methyl groups resulted in a structural perturbation in the folding conformation of the E-ring of the intermediate C-20 cation at the active site of the enzyme (in the case of β-amyrin formation, the oleanyl $\mathrm{C}-19$ cation is folded in all-chair conformation), resulting in the interruption of the sequential rearrangement reactions. To further understand the enzyme reaction mechanism, chemical studies utilizing active site probes in combination with site-directed mutagenesis are in progress.

Acknowledgment. This work was supported in part by the COE 21 Program and Grant-in-Aid for Scientific Research (Nos. 14580613, 15101007, and 1531053) from the Ministry of Education, Culture, Sports, Science and Technology, Japan by a Grant-in-Aid from The Mochida Memorial Foundation for Medical and Pharmaceutical Research, and by the Tokyo Biochemical Research Foundation, Japan.

Supporting Information Available: Complete set of spectroscopic data of compounds $\mathbf{1 b}, \mathbf{4 b}, \mathbf{5 b}$, and $\mathbf{6 b}$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent reviews, see: (a) Abe, I.; Rohmer, M.; Prestwich, G. D. Chem. Rev. 1993, 93, 2189-2206. (b) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812-2833. (c) Segura, M. J. R.; Jackson, B. E.; Matsuda, S. P. T. Nat. Prod. Rep. 2003, 20, 304-317. (d) Xu, R.; Fazio, G. C.; Matsuda, S. P. T. Phytochemistry 2004, 65, 261-291.
(2) (a) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890-1904. (b) Rees, H. H.; Britton, G.; Goodwin, T. W. Biochem. J. 1968, 106, 659-665. (c) Barton, D. H. R.; Mellows, G.; Widdowson, D. A.; Wright, J. J. J. Chem. Soc., C 1971, 1142-1148. (d) Seo, S.; Tomita, Y.; Tori, K. J. Am. Chem. Soc. 1981, 103, 2075-2080. (e) Seo, S.; Yoshimura, Y.; Uomori, A.; Takeda, K.; Seto, H.; Ebizuka, Y.; Sankawa, U. J. Am. Chem. Soc. 1988, 110, 1740-1745.
(3) For enzyme purification, see: (a) Abe, I.; Sankawa, U.; Ebizuka, Y. Chem. Pharm. Bull. 1989, 37, 536-538. (b) Abe, I.; Ebizuka, Y.; Seo, S.; Sankawa, U. FEBS Lett. 1989, 249, 100-104. (c) Abe, I.; Sankawa, U.; Ebizuka, Y. Chem. Pharm. Bull. 1992, 40, 1755-1760.
(4) For cloning and expression, see: (a) Kushiro, T.; Shibuya, M.; Ebizuka, Y. Eur. J. Biochem. 1998, 256, 238-244. (b) Morita, M.; Shibuya, M.; Kushiro, T.; Masuda, K.; Ebizuka, Y. Eur. J. Biochem. 2000, 267, 34533460.
(5) (a) Kushiro, T.; Shibuya, M.; Ebizuka, Y. J. Am. Chem. Soc. 1999, 121, 1208-1216. (b) Kushiro, T.; Shibuya, M.; Masuda, K.; Ebizuka, Y. J. Am. Chem. Soc. 2000, 122, 6816-6824.
(6) Abe, I.; Sakano, Y.; Tanaka, H.; Lou, W.; Noguchi, H.; Shibuya, M.; Ebizuka, Y. J. Am. Chem. Soc. 2004, 126, 3426-3427.
(7) For an early report for enzymatic conversion of 24,30-bisnor-2,3oxidosqualene by $\beta \mathrm{AS}$, see: Corey, E. J.; Gross, S. K. J. Am. Chem. Soc. 1968, $90,5045-5046$. A ${ }^{3} \mathrm{H}$-labeled substrate was incubated with a crude cell-free extract from germinating pea seeds. Recrystallizations of the enzyme reaction product with cold 29,30 -bisnor- β-amyrin were repeated to constant specific activity.
(8) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.80(\mathrm{ddt}, 1 \mathrm{H}, J=17.2,10.4,6.6 \mathrm{~Hz}$), $5.18-5.11(\mathrm{~m}, 4 \mathrm{H}), 5.00(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 4.93$ (br d, $1 \mathrm{H}, J=$ $10.1 \mathrm{~Hz}), 2.70(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.17-1.97(\mathrm{~m}, 8 \mathrm{H}), 1.69-1.54(\mathrm{~m}$, $12 \mathrm{H}), 1.62-1.60(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.8,135.1,135.0,134.4,134.0,124.9,124.6,124.4$, $124.3,114.2,64.2,58.3,39.7(\times 2), 39.0,36.3,32.4,28.2(\times 2), 27.5$, 26.7, 26.6, 24.9, 18.7, 16.0 ($\times 4$). LRMS (EI): $m / z 398,380,81$. HRMS (EI): found for $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}\right]^{+}, 398.3554$; calcd, 398.3548 .
(9) P. sativum β AS was expressed in the yeast mutant strain GIL77 (10 L of culture) as described before. ${ }^{5}$ The reaction mixture containing $\mathbf{1 b}(40 \mathrm{mg})$, 0.45 M sucrose, 1 mM EDTA, 1 mM DTT, and 0.1% Triton X-100 in 200 mL of $0.1 \mathrm{M} \mathrm{KPB}, \mathrm{pH} 7.4$, was incubated at $30^{\circ} \mathrm{C}$ for 18 h . The incubations were stopped by adding equal volume of $20 \% \mathrm{KOH}$ in 50% aq EtOH , saponified at $30^{\circ} \mathrm{C}$ for 24 h , and extracted with 400 mL of hexane $(\times 3)$. The combined extracts were evaporated to dryness and separated on SiO_{2} column ($20 \% \mathrm{EtOAc} /$ hexane) to yield 13.2 mg of $4,4-$ dimethylsterol fraction, which was further separated by HPLC (TSKgel Super-ODS, TOSOH; 95% aq $\mathrm{CH}_{3} \mathrm{CN} ; 1.0 \mathrm{~mL} / \mathrm{min} ; 32{ }^{\circ} \mathrm{C}$) to give 3.8 mg of $\mathbf{4 b}, 1.3 \mathrm{mg}$ of $\mathbf{5 b}$, and 0.3 mg of $\mathbf{6} \mathbf{b}$, along with 2.3 mg of β-amyrin derived from 2,3-oxidosqualene accumulated in the mutant yeast cells.
(10) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.20(\mathrm{t}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-12), 3.22(\mathrm{dd}$, $1 \mathrm{H}, J=10.6,5.0 \mathrm{~Hz}, \mathrm{H}-3), 1.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-27), 1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-23)$, 0.98 (s, 3H, Me-26), 0.94 (s, 3H, Me-25), 0.81 (s, 3H, Me-28), 0.79 (s, $3 \mathrm{H}, \mathrm{Me}-24) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6(\mathrm{C}-13)$, 121.6 (C12), 79.1 (C-3), 55.2 (C-5), 51.8 (C-18), 47.7 (C-9), 41.7 (C-14), 41.6 (C-22), 39.8 (C-8), 38.8 (C-4), 38.6 (C-1), 37.0 (C-10), 34.2 (C-19), 33.1 (C-17), 32.7 (C-7), 28.7 (C-28), 28.1 (C-23), 27.4 (C-20), 27.2 (C-2)*, $27.2(\mathrm{C}-16)^{*}, 26.3(\mathrm{C}-15), 25.9(\mathrm{C}-27), 23.5(\mathrm{C}-11), 22.3$ (C-21), 18.4 (C-6), 16.8 (C-26), 15.6 (C-24), 15.5 (C-25) ($*=$ exchangeable). LRMS (EI; TMS derivative): $m / z 470,455,380,365,279,190$. HRMS (EI): found for $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}\right]^{+}$, 398.3554; calcd, 398.3548. $[\alpha]_{\mathrm{D}}{ }^{28}+36^{\circ}$ (c 0.38, CHCl_{3}).
(11) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.15$ (br s, $1 \mathrm{H}, \mathrm{H}-19$), $3.21(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.5,5.5 \mathrm{~Hz}, \mathrm{H}-3$), 1.09 (s, $3 \mathrm{H}, \mathrm{Me}-26$), 1.04 (s, $3 \mathrm{H}, \mathrm{Me}-28$), 0.97 (s , $3 \mathrm{H}, \mathrm{Me}-23$), 0.88 (s, 3H, Me-25), 0.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-24$), 0.75 (s, 3H, Me27). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.5$ (C-18), 118.5 (C-19), 79.0 (C-3), 55.5 (C-5), 51.2 (C-9), 43.4 (C-14), 40.7 (C-8), 40.6 (C-22), 38.9 (C-1), 38.9 (C-4), 38.8 (C-13), 37.7 (C-16), 37.2 (C-10), 34.6 (C-7), 34.4 (C-17), $28.0(\mathrm{C}-23), 27.4(\mathrm{C}-2)^{*}, 27.4(\mathrm{C}-15)^{*}, 26.5(\mathrm{C}-20), 26.1(\mathrm{C}-12)$, 25.5 (C-28), 21.2 (C-11), 18.9 (C-21), 18.3 (C-6), 16.7 (C-26), 16.1 (C25), 15.4 (C-24), 14.7 (C-27) (* = exchangeable). LRMS (EI; TMS derivative): $\mathrm{m} / \mathrm{z} 470,380,365,341,279,231,201,190,176$. HRMS (EI): found for $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}\right]^{+}, 398.3543$; calcd, 398.3548. $[\alpha]_{\mathrm{D}}{ }^{29}-9^{\circ}(c$ $0.13, \mathrm{CHCl}_{3}$).
(12) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.21(\mathrm{dd}, 1 \mathrm{H}, J=11.0,5.0 \mathrm{~Hz}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$. LRMS (EI; TMS derivative): m / z 470, 455, 365, 281, 190, 176, 161. HRMS (EI): found for $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}\right]^{+}, 398.3560$; calcd, 398.3548. $[\alpha]_{\mathrm{D}}{ }^{29}$ -35° (c 0.09, CHCl_{3}).

JA0490368

[^0]: \dagger University of Shizuoka
 \# University of Tokyo.

